Unit 8: Boolean Algebra (AS Content)

Marks:

Answer all the questions.

1. Draw the logic gates represented by the Karnaugh Map below. Show your working.

CD	AB				
	00	00	01	11	10
		1	1	0	0
	01	1	1	0	0
	11	0	0	1	1
	10	0	0	1	1

2. An electronics engineer needs a circuit with the following logic.
$(\mathrm{A} \wedge \mathrm{B}) \vee(\neg \mathrm{A} \wedge \mathrm{B}) \vee(\neg \mathrm{C} \wedge \neg \mathrm{D})$

Complete and use the Karnaugh map below to simplify the expression above.

Simplified expression:

3(a).
Draw an XOR gate.
(b). Explain the difference in the function of $O R$ and $X O R$ gates.
\qquad
\qquad
\qquad
\qquad
4. A NAND gate and its truth table are shown in Fig. 10.1.

\mathbf{A}	\mathbf{B}	\mathbf{Q}
0	0	1
0	1	1
1	0	1
1	1	0

Fig. 10.1

Draw a set of gates equivalent to a NAND gate, but built only of AND, OR and NOT gates.

| Question | | Answer/Indicative content | Marks | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | | | 2 | |

